Advanced Compute Task Structure (Preview Version)

Each Owl compute node dynamically generates compute tasks based on current system status and predefined strategies. These tasks (ComputeTask) are used for:

  • Sentiment Monitoring (e.g., community emotions, FOMO/FUD signals)

  • Whale Transaction Tracing (real-time tracking of large on-chain flows)

  • Trending Token Extraction (detecting CA activity surges)

  • Token Graph Building (creating token interaction and exposure maps)

  • AI Model Sample Preparation (for LLMs and custom predictive models)

🔧 Task Generation Logic

    def __init__(self, task_type, data_source, params, priority=0):
        self.task_id = generate_task_id()
        self.task_type = task_type  # e.g., 'sentiment', 'whale_trace'
        self.data_source = data_source  # ['ethereum', 'twitter', 'solana']
        self.params = params  # e.g., CA list, time range
        self.priority = priority
        self.timestamp = now()

🤖 Model Triggering & Smart Response (LLM & Strategy Engine)

Once a task is completed, the result is routed into the intelligent preprocessing channel and triggers a specialized strategy model (e.g., TrendX-AlphaCore-v2):

def route_to_model(task_result):
    model = model_registry.get(task_result.task_type)
    response = model.process(task_result.data)

    if task_result.task_type == "sentiment":
        return parse_sentiment_signal(response)
    elif task_result.task_type == "whale_trace":
        return generate_alert(response)

The model may use multi-layer neural networks:

class AlphaCoreModel:
    def process(self, data):
        vectorized = self.vectorize(data)
        signal = self.infer(vectorized)
        return signal

    def infer(self, x):
        return sigmoid(W3 * relu(W2 * relu(W1 * x + b1) + b2) + b3)

🧩 Data Fusion → On-chain Trigger

All outputs are processed through the DFG (Data Fusion Graph) engine, which merges sentiment, whale activity, and contract data to generate composite scores.

def generate_fusion_graph(sentiment, whale_flow, ca_activity):
    fusion_score = sentiment["score"] * 0.6 + whale_flow["weight"] * 0.3 + ca_activity["rank"] * 0.1
    if fusion_score > 0.8:
        trigger_alert(ca_activity["contract"])

Alerts can be pushed to Telegram bots or committed directly on-chain:

def trigger_alert(contract):
    tx = build_contract_alert_tx(contract)
    send_to_blockchain(tx)

📡 API Example (ComputeNode ↔ Owlverse Server)

POST /compute/task
{
  "wallet": "0x123...",
  "task_type": "sentiment",
  "ca": ["0x456...", "0x789..."],
  "time_range": "3600s"
}

GET /compute/result?task_id=abc123
{
  "task_id": "abc123",
  "result": {
    "score": 0.92,
    "trend": "positive",
    "top_keywords": ["buy", "moon", "whale"]
  }
}

Last updated