Advanced Compute Task Structure (Preview Version)
Each Owl compute node dynamically generates compute tasks based on current system status and predefined strategies. These tasks (ComputeTask) are used for:
Sentiment Monitoring (e.g., community emotions, FOMO/FUD signals)
Whale Transaction Tracing (real-time tracking of large on-chain flows)
Trending Token Extraction (detecting CA activity surges)
Token Graph Building (creating token interaction and exposure maps)
AI Model Sample Preparation (for LLMs and custom predictive models)
🔧 Task Generation Logic
def __init__(self, task_type, data_source, params, priority=0):
self.task_id = generate_task_id()
self.task_type = task_type # e.g., 'sentiment', 'whale_trace'
self.data_source = data_source # ['ethereum', 'twitter', 'solana']
self.params = params # e.g., CA list, time range
self.priority = priority
self.timestamp = now()
🤖 Model Triggering & Smart Response (LLM & Strategy Engine)
Once a task is completed, the result is routed into the intelligent preprocessing channel and triggers a specialized strategy model (e.g., TrendX-AlphaCore-v2
):
def route_to_model(task_result):
model = model_registry.get(task_result.task_type)
response = model.process(task_result.data)
if task_result.task_type == "sentiment":
return parse_sentiment_signal(response)
elif task_result.task_type == "whale_trace":
return generate_alert(response)
The model may use multi-layer neural networks:
class AlphaCoreModel:
def process(self, data):
vectorized = self.vectorize(data)
signal = self.infer(vectorized)
return signal
def infer(self, x):
return sigmoid(W3 * relu(W2 * relu(W1 * x + b1) + b2) + b3)
🧩 Data Fusion → On-chain Trigger
All outputs are processed through the DFG (Data Fusion Graph) engine, which merges sentiment, whale activity, and contract data to generate composite scores.
def generate_fusion_graph(sentiment, whale_flow, ca_activity):
fusion_score = sentiment["score"] * 0.6 + whale_flow["weight"] * 0.3 + ca_activity["rank"] * 0.1
if fusion_score > 0.8:
trigger_alert(ca_activity["contract"])
Alerts can be pushed to Telegram bots or committed directly on-chain:
def trigger_alert(contract):
tx = build_contract_alert_tx(contract)
send_to_blockchain(tx)
📡 API Example (ComputeNode ↔ Owlverse Server)
POST /compute/task
{
"wallet": "0x123...",
"task_type": "sentiment",
"ca": ["0x456...", "0x789..."],
"time_range": "3600s"
}
GET /compute/result?task_id=abc123
{
"task_id": "abc123",
"result": {
"score": 0.92,
"trend": "positive",
"top_keywords": ["buy", "moon", "whale"]
}
}
Last updated