Advanced Compute Task Structure (Preview Version)

Each Owl compute node dynamically generates compute tasks based on current system status and predefined strategies. These tasks (ComputeTask) are used for:

  • Sentiment Monitoring (e.g., community emotions, FOMO/FUD signals)

  • Whale Transaction Tracing (real-time tracking of large on-chain flows)

  • Trending Token Extraction (detecting CA activity surges)

  • Token Graph Building (creating token interaction and exposure maps)

  • AI Model Sample Preparation (for LLMs and custom predictive models)

πŸ”§ Task Generation Logic

    def __init__(self, task_type, data_source, params, priority=0):
        self.task_id = generate_task_id()
        self.task_type = task_type  # e.g., 'sentiment', 'whale_trace'
        self.data_source = data_source  # ['ethereum', 'twitter', 'solana']
        self.params = params  # e.g., CA list, time range
        self.priority = priority
        self.timestamp = now()

πŸ€– Model Triggering & Smart Response (LLM & Strategy Engine)

Once a task is completed, the result is routed into the intelligent preprocessing channel and triggers a specialized strategy model (e.g., TrendX-AlphaCore-v2):

def route_to_model(task_result):
    model = model_registry.get(task_result.task_type)
    response = model.process(task_result.data)

    if task_result.task_type == "sentiment":
        return parse_sentiment_signal(response)
    elif task_result.task_type == "whale_trace":
        return generate_alert(response)

The model may use multi-layer neural networks:


🧩 Data Fusion β†’ On-chain Trigger

All outputs are processed through the DFG (Data Fusion Graph) engine, which merges sentiment, whale activity, and contract data to generate composite scores.

Alerts can be pushed to Telegram bots or committed directly on-chain:


πŸ“‘ API Example (ComputeNode ↔ Owlverse Server)

Last updated